Koi carp radio tracking

Adam Daniel recently completed a year-long tank study to determine the rejection rate of surgically implanted transmitters by koi carp. Up to 60% of transmitters were expelled from koi carp at 20-24°C. Implantation at lower water temperatures was therefore used for the movement study. Neither polymer transmitter coating and physical attachment of transmitters to the pelvic girdle of fish increased the retention of transmitters in test fish. Transmitter expulsions were likely caused by infection and this has led to a new tank study involving an antibiotic, which should begin in early February of 2008. Adam will present the results of this trial in February 2008 at the International Symposium on Advances in Fish Tagging & Marking in Auckland.

Transmitter retention by koi carp

Laser ablation determines movement of rainbow trout and common smelt in Rotorua lakes

Matt Riceman will complete his MSc on otolith microchemistry of rainbow trout and common smelt in late Feb., 2008. The study aims to test the feasibility of using laser ablation (LA-ICP-MS) to discriminate natal habitats fish movement between lakes Rotorua and Rotoiti. Both fish species are lake-locked (i.e., do not have access to the sea), but can move between the lakes via the Ohau Channel. Otoliths from juvenile rainbow trout from six spawning tributaries were analysed and compared with the otolith nucleus for adults of unknown origin. Otoliths from common smelt from distinct beach habitats around each lake were similarly analysed.

Using Mn, Zn, Rb, Sr, and Ba standardised to Ca, a discriminant function using juvenile trout as the training set could determine lake of origin with 97% accuracy. Tributary stream of origin could be determined with 100% accuracy for three tributaries, and 71-90% accuracy for a further four tributaries. Using the same methods, determination of lake of origin for common smelt was less successful, i.e., 61-75% accurate. These results show that otolith LA-ICP-MS holds considerable promise for determining movement of rainbow trout between lakes Rotorua and Rotoiti. These methods could be applied to other lakes in New Zealand.

This work is a funded contract to Environment Bay of Plenty secured through Matt’s supervisor, Associate Professor Brendan Hicks.

Chinese scientist Associate Professor Guangwei Zhu, from the Nanjing Institute of Geography & Limnological Sciences (NIGLAS), visited Waikato University from 13 Jan. to 4 Feb., 2008, under sponsorship International Sciences and Technology (NZ) programme. Guangwei administers the water quality monitoring programme of NIGLAS in Lake Taihu, which is the third largest freshwater lake of China, with an area of 2358 km², and with 37 million people within its catchment.

Last October, Guangwei collaborated with Prof. David Hamilton and Chris McBride to set up a wireless monitoring buoy in Lake Taihu similar to one in Lake Rotorua. The sensors include dissolved oxygen, chlorophyll a, turbidity and a weather station. The data from the buoy in Lake Taihu are logged through the iQuest system at 10 min. intervals. The main purpose of Dr Zhu’s visiting was to exchange experiences with buoy maintenance and lake management. He participated in the monthly Biofish investigation of five Rotorua lakes and the annual meeting of the Lakes Water Quality Society held on 28 Jan.

Figure 1: Associate Professor Brendan Hicks (middle) and PhD students Grant Tempero (left) and Adam Daniel (right)

Figure 2: Adult koi carp (Cyprinus carpio) with implanted radio transmitter and external dart tag.

Figure 3: Canonical scores from a discriminant function analysis (DFA) of juvenile rainbow trout otoliths. Ellipses are 63% confidence bands around scores calculated from unstandardised DFA coefficients. Haupuru and Te Toroa tributaries: other streams flow into L. Rotorua.
Pest fish detection using DNA

In a FRST-funded study by Matt Knox, Ian Hogg, and Brendan Hicks, a DNA-based detection system for invasive fish species was tested. A 250-base region of 16S rRNA was amplified and sequenced from white muscle, faecal material, and slime, but failed to show sufficient sequence variability to distinguish fish species. However, a 700-base pair region of cytochrome oxidase I (COI) mitochondrial DNA successfully delineated a variety of native and introduced fish species using fish-specific primers. * shows species we sequenced cf. Genbank data.

DNA extraction from slime or faecal material was successful in about 50% of cases, and yielded good quality sequencing results. In one case, fish COI mDNA was extracted and amplified from tank water containing goldfish. Sequencing results matched with our previous goldfish sequences. This research holds promise for transfer to environmental samples, which is our next goal.

New Zealand Freshwater Sciences/Australian Society for Limnology Conference

Queenstown, New Zealand December 2007

New Zealand Freshwater Sciences/Australian Society for Limnology Conference was held on the 3rd to 7th of December at Queenstown, New Zealand. David Hamilton, Nick Ling and other staff and students from University of Waikato attended the conference and gave presentations as follows:

(all are cited as: New Zealand Freshwater Sciences/Australian Society for Limnology Conference, Queenstown, NZ, 3-7 December, 2007)

Aldridge, B.M.T.A., B.J. Hicks, and K.J. Collier. 2007. Restoring habitat and giant kokopu populations in urban streams. Hamilton City, New Zealand.


Tana, R. and B.J. Hicks. 2007. The influence of an open and closed river system on the migration patterns of two northland populations of banded kokopu (Galaxias fasciatus).


Now that’s a bloom!

Lake Taihu in August last year

For more information visit
www.LERNZ.co.nz

Centre for Biodiversity and Ecology Research
Department of Biological Sciences
School of Science and Engineering
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand